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Abstract

In this paper the controllable spread of some infectious disease is considered. The evolution
model of the disease is described by the 3-dimensional nonlinear ordinary differential equations
system. Vaccination and treatment are accepted as control parameters of the system. It is
assumed that the stocks of vaccination and treatment is limited. Attainable sets of the system
are approximately calculated for different control stocks. Graphical results are presented and
possible biological applications are discussed.
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1 Introduction

The attainable set of given control system is one of the important notions of the control system
theory and is useful tool for investigation of various problems of control systems, differential games
and optimization theory (see, e.g. [2], [17], [18], [19], [21]). The attainable set of the control system
at given instant of time t consists of points to which the system can be steered at instant of time t.
Construction or estimating attainable sets is the one of the fundamental problems of control theory.
Predetermining of the attainable sets allows to predict different properties of the control system
and to design a control function with desired properties.

The methods developed for approximate calculation of the attainable set of the control system
vary with respect to whether or not the function defining the system is linear, or to the constraints
which satisfy the control functions. The control functions of the system’s being geometric constraint
means that the control effort is a kind of quantity limited but not exhausted by consumption,
whereas the control functions of the system’s being integral constraint is explained in the way
that the control resource is limited and is exhausted by consumption. Thus, the control problems
concerning the sources that are limited and exhausted by consumption are modeled as control
systems with integral constraint on control functions (see, e.g. [3], [17], [23]).

The topological properties and approximate calculation methods of attainable sets of affine
control systems (i.e. nonlinear with respect to the phase state vector and affine with respect to
the control vector) with integral constraint on the controls have been considered in [8], [9]. These
studies are generalized for fully nonlinear case in papers [10], [11], [12] and in [13] an algorithm is
presented for approximate calculation of the attainable set. Approximate calculation of attainable
sets of controllable physical or biological systems can be used for detailed study of such phenomena
in depth.

In this paper we consider evolution of the infectious disease, where vaccination and medicine
used for treatment are chosen as control efforts. The mathematical model of this process is described
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by the 3-dimensional system of the nonlinear ordinary differential equations. The mathematical
model includes susceptible, infected and recovered groups of individuals which is denoted by S, I
and R and therefore is called SIR model. It is also assumed that the stock of vaccine and medicine
is limited. The attainable set of given SIR model is calculated.

The paper is organized as follows: In section 2, we present the SIR model to be investigated
(Equation 2.1). In section 3, we give the basic conditions which the system have to satisfy (Condions
3.A, 3.B and 3.C) and formulate the theorem from [12] which presents an approximation of the
attainable sets of control systems with integral constraint on the controls (Theorem 3.1). In section
4 is shown that the functions appeared in the right hand side of the differential equations described
the SIR model satisfy the basic conditions. The theorem characterizing approximation of the
attainable sets of the SIR model is formulated (Theorem 4.1). In section 5, the attainable set of
the biological system is calculated for various control stocks and graphical results are presented.
By using calculated attainable sets, some biological conclusions are discussed.

2 Model formulation

2.1 Preliminary results

There are several mathematical models describing the spread of infectious diseases and these models
have been applied for studying of many diseases ([1], [4], [5], [7], [15]) . One of the simplest and
basic SIR models is the Kermack-McKendrick model, published in 1927 ([16]). The SIR model
is used in epidemiology to compute the amount of susceptible, infected and recovered people in a
population. There are also some examples on the use of SIR model for controlling of infectious
diseases. These studies are generally related with optimal control theory and their aims are to find
optimal control strategies to effect the spread of diseases ([6], [14], [22], [20]).

In this work, we first consider a modified SIR epidemic model ([4]) which is given by the system
of differential equations

·
S(t) = νN(t)− ν∗S(t)− βI(t)S(t)

N(t)
, S(0) = S0 ≥ 0 (2.1a)

·
I(t) =

βI(t)S(t)

N(t)
− (γ + ν∗)I(t), I(0) = I0 ≥ 0 (2.1b)

·
R(t) = γI(t)− ν?R(t), R(0) = R0 ≥ 0 (2.1c)

where S(t) represents the number of susceptible individuals, I(t) represents the number of in-
dividuals who are infected, and R(t) represents the number of the individuals who are recov-
ered from the disease with permanent immunity to reinfection. N(t) is the total population i.e.,
N(t) = S(t) + I(t) +R(t). Here β is a transmission coefficient, γ is recover rate and the constants
ν and ν∗ stands for death and birth rates respectively. We consider ν, ν∗, β and γ are all positive
constants.

Moreover, adding the equations 2.1a, 2.1b and 2.1c, it is derived
·
N(t) = (v − v∗)N . While

ν 6= ν∗ it is obvious that population is not constant. Because of that its more suitable to consider
the proportions of individuals in three epidemiological classes, namely: s(t) = S(t)/N(t), i(t) =
I(t)/N(t), r(t) = R(t)/N(t).

Since,



ATN 13

·
s =

·
SN −

·
NS

N2
=

(νN − ν∗S − βIS/N)N − (ν − ν∗)NS
N2

= v − vs− βis,

·
i =

·
IN −

·
NI

N2
=

[βIS/N − (γ + ν∗)I]N − (ν − ν∗)NI
N2

= βis− γi− νi,

·
r =

·
RN −

·
NR

N2
=

[γI − ν∗R]N − (ν − ν∗)NR
N2

= γi− νr,
we obtain a new system by fractions,

·
s(t) = ν − νs− βis, s(0) = s0 ≥ 0
·
i(t) = βis− γi− νi, i(0) = i0 ≥ 0
·
r(t) = γi− νr, r(0) = r0 ≥ 0

(2.2)

with subject to the restriction s+ i+ r = 1.
It notices that the compartment r = r(t) does not appear in the first two equation of (2.2).

Therefore, we can consider the sub-system

·
s(t) = v − vs− βis, s(0) = s0 ≥ 0
·
i(t) = βis− γi− νi. i(0) = i0 ≥ 0

(2.3)

and determine r from r = 1− s− i or from the last equation of the system (2.2).
The feasible region of (2.3) is

Ω =
{
x = (s, i) ∈ R2

+|0 ≤ s+ i ≤ 1
}
, (2.4)

which can be verified positively invariant(i.e. for given initial point x ∈ R2
+, the trajectory lies

in Ω). Hence, the system is both mathematically and epidemiologially well-posed. Thus, we can
restrict our attention to the region Ω.

2.2 Model with vaccination and treatment

At this point we modify our model (2.2) by imposing vaccination and treatment.It is assumed that
there are two available exterior effort to control the spread of disease: vaccination of the susceptible
individuals and treatment of the infected ones. In the model

·
s(t) = v − vs− βis− su1, s(0) = s0 ≥ 0
·
i(t) = βis− γi− νi− iu2, i(0) = i0 ≥ 0
·
r(t) = γi− νr + su1 + iu2, r(0) = r0 ≥ 0

(2.5)

this actions are modeled by the two dimensional control function u(·) = (u1(·), u2(·)) : [0, 1]→ R2.
Here, u1(t) is the proportion of the consumed vaccines for susceptible individuals, u2(t) is the
proportion of the consumed medicines for treatment of the infected individuals at the instant of
time t such that 0 ≤ u1(t) ≤ 1 and 0 ≤ u2(t) ≤ 1. Also, we assume that the control function
u(·) : [0, 1]→ R2 satisfies the inequality∫ 1

0

‖u(t)‖2 dt =

∫ 1

0

(
u1

2(t) + u2
2(t)

)
dt ≤ µ2

0. (2.6)
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This means that the whole stock of vaccines and medicines which can be consumed to effect the
spread of disease, is µ0.

If we focus on reduced system of (2.5), and for own convenience if we use s=S, i=I, r=R, the
system becomes

·
S(t) = ν − νS − βIS − Su1, S(0) = S0 ≥ 0
·
I(t) = βIS − γI − νI − Iu2, I(0) = I0 ≥ 0.

(2.7)

Here, we determine R = 1− S − I.

3 Approximate calculation of attainable set

In this section, firstly, we give preliminaries for the attainable sets of a general control system. After
this, we mention the approximate calculation method for the attainable sets. Detailed information
and algorithm about this method is given in [13].

Consider the control system the behavior of which is described by the differential equation

·
x(t) = f(t, x(t), u(t)), x(0) = x0 ∈ Rn, (3.1)

where x ∈ Rn is the phase state vector of the system, u ∈ Rm is the control vector and t ∈ [0, 1] is
the time.

Let p > 1 and µ0 > 0. Every function u(·) ∈ Lp ([0, 1];Rm) such that 1∫
0

‖u(t)‖p dt


1
p

≤ µ0 (3.2)

is said to be an admissible control function, where Lp([0, 1];Rm) denotes the space of Lebesgue

measurable functions u(·) : [0, 1]→ Rm such that ‖u(·)‖p < +∞, ‖u(·)‖p =

 1∫
0

‖u(t)‖p dt


1
p

.

The set of all admissible control functions is denoted my Up, i.e.

Up =
{
u(·) ∈ Lp

(
[0, 1];Rm

)
: ‖u(·)‖p ≤ µ0

}
.

It is obvious that Up is the closed ball centered at the origin with radius µ0 in Lp
(
[0, 1];Rm

)
.

We assume that the right hand side of the system (3.1) satisfies the following conditions:

3.A. The function f(·) : [0, 1]× Rn × Rm → Rn is continuous;

3.B. For any bounded set D ⊂ [0, 1]×Rn there exist constants L1 = L1(D) > 0 , L2 = L2(D) > 0
and L3 = L3(D) > 0 such that

‖f(t, x1, u1)− f(t, x2, u2)‖ ≤ [L1 + L2(‖u1‖+ ‖u2‖)] ‖x1 − x2‖+ L3 ‖u1 − u2‖

for any (t, x1) ∈ D, (t, x2) ∈ D, u1 ∈ Rm and u2 ∈ Rm;
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3.C. There exists a constant c > 0 such that

‖f(t, x, u)‖ ≤ c(1 + ‖x‖)(1 + ‖u‖)

for every (t, x, u) ∈ [0, 1]× Rn × Rm.

Let u∗(·) ∈ Up. The absolutely continuous function x∗(·) : [0, 1] → Rn which satisfies the
equation ẋ∗(t) = f(t, x∗(t), u∗(t)) a.e. in [0, 1] and the initial condition x∗(0) = x0 ∈ Rn is said to
be a trajectory of the system (3.1), generated by the admissible control function u∗(·). We denote
a trajectory of the system (3.1), generated by the admissible control function u(·) by the symbol
x(·; 0, x0, u(·)).

For given t ∈ [0, 1] we set

Xp(t; 0, x0) = {x(t; 0, x0, u(·)) : u(·) ∈ Up} .

The set Xp(t; 0, x0) is called the attainable set of the system (3.1) with constraint (3.2) at the
instant of time t. It is clear that the set Xp(t; 0, x0) consist of all x ∈ Rn to which the system (3.1)
is steered at the instant of time t ∈ [0, 1].

The Hausdorff distance between the sets A ⊂ Rn and E ⊂ Rn is denoted by h(A,E) and is
defined as

h (A,E) = max

{
sup
x∈A

d(x,E), sup
y∈E

d(y,A)

}
,

where d(x,E) = inf {‖x− y‖ : y ∈ E}.
For given σ > 0, let

Sσ = {s0, s1, s2, . . . , sK}

be a finite σ-net of unit sphere S = {u ∈ Rm : ‖u‖ = 1}.
Let Γ = {0 = t0 < t1 < . . . < tN = 1} be a uniform partition of the interval [0, 1], ∆ = ti+1− ti,

i = 0, 1, . . . N − 1, Γ∗ = {0 = y0 < y1 < . . . < ya = H} be a uniform partition of the segment [0, H]
and ∆∗ = yj+1 − yj , j = 0, 1, . . . a− 1.

Setting

UHp,∆,∆∗,σ =
{
u(·) ∈ Lp ([0, 1];Rm) : u(t) = yjisli , t ∈ [ti, ti+1), yji ∈ Γ∗, sli ∈ Sσ,

i = 0, 1, . . . , N − 1 and ∆ ·
N−1∑
i=0

ypji ≤ µ
p
0

}
we define a new control functions set. It is clear that UHp,∆,∆∗,σ

⊂ Up.
Since Γ∗ = {0 = y0 < y1 < . . . < ya = H} is the uniform partition of the segment [0, H] and the

diameter of Γ∗ is ∆∗, then yji ∈ Γ∗ can be represented as

yji = ji∆∗, (3.3)
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where 0 ≤ ji ≤ a is an integer. Since the the numbers yji ∈ Γ∗, i = 0, 1, . . . , N − 1, satisfy the

inequality ∆ ·
N−1∑
i=0

ypji ≤ µp0, then the integers 0 ≤ ji ≤ a, i = 0, 1, . . . , N − 1, have to satisfy the

inequality

N−1∑
i=0

(ji)
p ≤ µp0

∆ (∆∗)
p . (3.4)

Taking into consideration (3.3) and (3.6), we can redefine the set UHp,∆,∆∗,σ
(1; 0, x0) as

UHp,∆,∆∗,σ =
{
u(·) ∈ Lp ([0, 1];Rm) : u(t) = ∆∗jisli , t ∈ [ti, ti+1), 0 ≤ ji ≤ a, sli ∈ Sσ,

i = 0, 1, . . . , N − 1 and

N−1∑
i=0

jpi ≤
µp0

∆ (∆∗)
p

}
.

By ZHp,∆,∆∗,σ
(1; 0, x0), we denote the set of all points z(1) = z(tN ) calculated by the recurrent

formula

z(ti+1) = z(ti) + (ti+1 − ti) f (ti, z(ti),∆∗jisli) , z(t0) = x0, i = 0, 1, . . . , N − 1, (3.5)

where sli ∈ Sσ and the integers 0 ≤ ji ≤ a, i = 0, 1, . . . , N − 1, satisfy the inequality

N−1∑
i=0

jpi ≤
µp0

∆ (∆∗)
p (3.6)

Following theorem characterizes the Hausdorff distance between the attainable set of the system
(3.1) with constraint (3.2) and the set ZHp,∆,∆∗,σ

(1; 0, x0) consisting of finite number of points.

Theorem 3.1. [12] For each given ε > 0 there exists H (ε) ∈ (0,∞), ∆∗(ε) > 0, ∆∗(ε) > 0 and
σ(ε) > 0 such that the inequality

h
(
Xp (1; 0, x0) , Z

H(ε)
p,∆,∆∗(ε),σ(ε) (1; 0, x0)

)
< ε (3.7)

holds for every ∆ ≤ ∆∗(ε).

Remark 3.2. For given ε > 0, the determination of the numbers H (ε) ∈ (0,∞), ∆∗(ε) > 0,
∆∗(ε) > 0 and σ(ε) > 0 in theorem 3.1 can be found in [12].

Using Theorem 3.1, it is possible to construct an algorithm for approximate calculation of the
attainable set of the system (3.1) with constraint (3.2).

For given ε > 0, after the numbers H (ε) ∈ (0,∞), ∆∗(ε) > 0, ∆∗(ε) > 0, σ(ε) > 0 having been
chosen in accordance with the inequality (3.7), the approximate calculation of the attainable set
Xp (1; 0, x0) can be reduced into the calculation of a simpler set ZHp,∆,∆∗,σ

(1; 0, x0) consisting of
finite number of points z(1) = z(tN ) calculated by the recurrent formula (3.5).

Now let us describe the steps of algorithm to calculate the set ZHp,∆,∆∗,σ
(1; 0, x0).
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1. First, for given σ > 0 we construct the set

Sσ = {s0, s1, s2, . . . , sK}

which is finite σ-net of the unit sphere S = {u ∈ Rm : ‖u‖ = 1} (an algorithm, determining a σ-net
on unit sphere S can be found in [13]).

2. In calculation of the set ZHp,∆,∆∗,σ
(1; 0, x0), the integers j0, j1, . . . , jN−1 satisfying the in-

equality (3.6) are chosen, where 0 ≤ ji ≤ a, i = 0, 1, . . . , N − 1. After choosing the integers
j0, j1, . . . , jN−1 and elements {sl0 , sl1 , . . . , slN } from Sσ , the points of the set ZHp,∆,∆∗,σ

(1; 0, x0)
are calculated by formula (3.5) (detailed algorithm is given in [13]).

4 Calculation of the attainable set of SIR model

Consider the reduced SIR model, the behavior of which is described by the system of equations
(2.7). Its easy to show that the right hand side of the system (2.7) satisfies the conditions 3.A, 3.B
and 3.C. and for all t ∈ [0, 1] solutions stay in the set Ω.

Denote
Ũ2 =

{
u(·) ∈ L2

(
[0, 1];R2

)
: ‖u(·)‖2 ≤ µ0

}
.

So, the set of control functions Ũ2 consists of Lebesgue measurable functions u(·) : [0, 1] → R2

such that the inequality (2.6) is satisfied. The set of trajectories of the system (2.1) generated by
the control function u∗(·) ∈ Ũ2 and satisfying the initial condition (S(0), I(0)) = (S0, I0) is denoted
by symbol (S (·; 0, S0, u∗(·)) , I (·; 0, I0, u∗(·))).

Let

X̃2 (t; 0, (S0, I0)) =
{

(S (t; 0, S0, u(·)) , I (t; 0, I0, u(·))) : u(·) ∈ Ũ2

}
.

Thus, the set X̃2 (t; 0, (S0, I0)) is attainable set of the system (2.7) at instant of time t from
initial position (0, (S0, I0)) , where the control functions satisfy the inequality (2.6).

In R2 the σ-net Sσ can be defined as

Sσ = {(sin iθ, cos iθ) : i = 0, 1, . . . , r} , (4.1)

where

θ ≤ σ2

2
, r =

[∣∣∣∣2πθ
∣∣∣∣] , (4.2)

[| · |] means the integer part. Since θ > 0, then we have

‖(sin(i+ 1)θ, cos(i+ 1)θ)− (sin iθ, cos iθ)‖ =

√
(sin(i+ 1)θ − sin iθ)

2
+ (cos(i+ 1)θ − cos iθ)

2

=
√

2− 2 [cos(i+ 1)θ · cos iθ + sin(i+ 1)θ · sin iθ] =
√

2 (1− cos θ) ≤
√

2θ ≤ σ,

and hence the set Sσ defined by (4.1) is a σ-net in S =
{
u = (u1, u2) ∈ R2 : ‖u‖ = 1

}
, where θ and

r satisfy (4.2).
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By Z̃Hp,∆,∆∗,σ
(1; 0, (S0, I0)), we denote the set of all points (S(1), I(1)) = (S(tN ), I(tN ))) calcu-

lated by the recurrent formula
·
S(ti+1) = S(ti) + ∆ [ν − νS(ti)− βI(ti)S(ti)− S(ti)∆∗ji| sin liθ|] , S(0) = S0 ,
·
I(ti+1) = I(ti) + ∆ [βI(ti)S(ti)− γI(ti)− νI(ti)− I(ti)∆∗ji |cos liθ|] , I(0) = I0 ,

where 0 ≤ li ≤ r, 0 ≤ ji ≤ a for every i = 0, 1, . . . , N − 1, the integers ji, i = 0, 1, . . . , N − 1, satisfy
the inequality (3.6).

According to the theorem 3.1 we have the validity of the following theorem.

Theorem 4.1. For each given ε > 0 there exists H (ε) ∈ (0,∞), ∆∗(ε) > 0, ∆∗(ε) > 0 and
σ(ε) > 0 such that the inequality

h
(
X̃p (1; 0, (S0, I0)) , Z̃

H(ε)
p,∆,∆∗(ε),σ(ε) (1; 0, (S0, I0))

)
< ε

holds for every ∆ ≤ ∆∗(ε).

5 Graphical representations and conclusions

Here, we provide some numerical simulations of the epidemiological model which describes the
theoretical results and predict the evolution of infectious diseases in the population. The model
we present here is very general as it can suit any model of diseases like H1N1(Influenza), measles,
chicken pox, mumps, etc.

Using the algorithm given in [13], we calculate the set Z̃
H(ε)
p,∆,∆∗(ε),σ(ε) (1; 0, (S0, I0)) which is an

approximation of the attainable set X̃p (1; 0, (S0, I0)) of the system (2.7) at instant of time t = 1.
In these calculations,it is accepted that p = 2, i.e. the admissible control functions are chosen from
the space L2

(
[0, 1] ;R2

)
. The approximate calculation of the set X̃2 (1; 0, (S0, I0)) is carried out for

different values of control stock parameters µ0. As we mentioned before, the fraction of recovered
individuals can be calculated by R(t) = 1− S(t)− I(t).

Note that if u1(t) = 0, u2(t) = 0, then we obtain system (2.3). We demonstrate a disease
scenario with hard situations by choosing parameters as ν = 0.02, β = 0.75, γ = 0.001 and for
initial fractions of individuals (S0, I0, R0) = (0.7, 0.3, 0). It is seen in Fig. 1 that if there will not be
any control effort, then the situation concerning to the spread of the infection is not favorable and
the system needs a control to obtain a profitable result. The fraction of infected individuals in the
population is getting fastly increased because of high contact rate(β) and almost all individuals are
becoming infected in a short time period. It is also observed that because of low natural recovery
rate(γ), the increment in the fraction of recovered individuals is so little .

In this circumstances the spreading of infectious disease must be controlled. In below presented
figures (Figure 2, Figure 3, Figure 4) the approximate calculated attainable sets of the system (2.7)
are given for different values of control stocks µ0. Using this calculations, let us discuss the state
of the system at the instant of time t = 1.

If µ0 = 0.1, (S0, I0) = (0.7, 0.3), then according to the Fig.2 we conclude that by using this
control stock the fraction of infected individuals in the population can be kept around of 40-45
percent. But it can be also inferred that the proportion of recovered individuals is nearly 5-10
percent. This control stock is not enough to get a favorable result. Infection rate is still high and
people who gain permanent immunity against to infection is inadequate.
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Figure 1. Susceptible, infected and recovered fraction without control effect

Figure 2. Control Stock µ0 = 0.1

If µ0 = 0.5, (S0, I0) = (0.7, 0.3), then it is observed in Fig. 3 that we obtain better result against
to spread of disease. It is achieved to regress the fraction of infected individuals through 25 percent
and also the fraction of recovered individuals can be steered to 30 percent.

If µ0 = 1, (S0, I0) = (0.7, 0.3) then according to the Fig.4 we deduce that under such control
effort, the fraction of infected individuals can be kept close to zero, i.e. there will be not infected
person. It is also understood in the figure, with the effect of vaccination and treatment, the
proportion of recovered individuals in the population is able to attained 80 percent.
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Figure 3. Control Stock µ0 = 0.5

Figure 4. Control Stock µ0 = 1
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